

DHANAMANJURI UNIVERSITY

SAMPLE QUESTIONS

Paper Code	:	EMA-008C
Paper Title	:	Cryptography & Network Security
Semester	:	VIII
Full Marks	:	80
Pass Mark	:	40

*The figures in the right margin indicates full marks for the questions
Answer all the questions:*

1. Choose and rewrite the correct answer: (1×3=3)

- (a) The decryption formula for RSA-cryptosystem is:
 - (i) $M = C^e \pmod{n}$,
 - (ii) $C = M^d \pmod{n}$
 - (iii) $C = M^e \pmod{n}$,
 - (iv) $M = C^d \pmod{n}$.
- (b) 11×10^6 is equivalent to:
 - (i) 128 bits,
 - (ii) 192 bits,
 - (iii) 256 bits,
 - (iv) None of the above.
- (c) The value of $14^4 \pmod{55}$ is:
 - (i) 11,
 - (ii) 14,
 - (iii) 31,
 - (iv) 26

2. Write very short answer for each of the following: (1×6=6)

- (a) What do you mean by Koblitz Curve?
- (b) Give an example of the replay attacks.
- (c) Change $(1101111)_2$ into a digital form.
- (d) For which n in $\phi(n) \equiv 2 \pmod{4}$.
- (e) Write briefly about PGP.
- (f) What do you mean by mobile security?

3. Write short answers for each of the following: (3×5=15)

- (a) Write the working of side channel attack.
- (b) Explain briefly Diffie-Hellman key exchange.
- (c) Write the roles of the public and private keys.

(d) Encrypt the message COME SOON using Caesar cipher.

(e) Write three important threats of email.

4. **Answer any five of the following:** $(4 \times 5 = 20)$

- (a) Write down the four basic conditions of a field.
- (b) Find the value of x if $x \equiv 3^{201} \pmod{11}$ by using Fermat's Theorem.
- (c) How will you factorize a big number into two prime numbers?
Factorize 10403 into two primes.
- (d) What do you mean by hash function? Can you write the best hash to use?
- (e) What are the differences between DES and AES?
- (f) How do Schnorr Signatures Work?

5. **Answer any two of the following:** $(6 \times 2 = 12)$

- (a) Encrypt the message "MEET ME AT NINE OCLOCK" using the Hill cipher with the key $\begin{pmatrix} 9 & 4 \\ 5 & 7 \end{pmatrix}$. Show your calculations and the result.
- (b) How many one-to-one affine Caesar ciphers are there? Write the digital decryption of the word 'WR WDON LQ FRGHWR LV LQWHOOIJLEH' using Caesar cipher.
- (c) Construct a Playfair matrix with the key *occurrence*. Make a reasonable assumption about how to treat redundant letters in the key.

6. **Answer any two of the following:** $(6 \times 2 = 12)$

- (a) Solve the simultaneous congruences: $x \equiv 2 \pmod{3}$, $x \equiv 1 \pmod{4}$ and $x \equiv 3 \pmod{5}$. Find the value of x by using the Chinese Remainder Theorem.
- (b) State and prove Euler's theorem.
- (c) Use the key 1010 0111 0011 1011 to encrypt the plaintext 'ok' as expressed in ASCII, that is 0110 1111 0110 1011. The designers of S-AES got the ciphertext 0000 0111 0011 1000. Do you?

7. Answer any *two* of the following: **(6×2=12)**

(a) If the plaintext message is $M = 6$ in a public-key cryptosystem using the RSA- algorithm. Perform encryption and decryption, where $p = 5$, $q = 11$, $e = 3$.

(b) What is email architecture? Describe in detail how does email system work in computer network.

(c) If E be the elliptic curve $Y^2 = X^3 - 15X + 18$ and the points $P = (7,16)$ and $Q = (1,2)$ lie on the curve E . Then obtain $P \oplus Q$ and $P \oplus P$ with diagrams.
